Analysis of the implementation of the Leslie matrix on the female population growth rate model

Authors

  • Siti Musyarofah SRMP 8 Cimahi Author
  • Herlinda Nur’afwa Sofhya UIN Siber Syekh Nurjati Cirebon Author

Keywords:

Leslie’s Matrix, Eigen Value, Growth Rate, Female Population

Abstract

Demographic problems in Indonesia are important because Indonesia is ranked fourth as the country with the largest population. One way to determine future population growth is to predict female population growth. The Leslie matrix is a model used to predict and determine female population growth. The general form of the Leslie matrix is a square matrix in which the first row entries are the female fertility rates, the subdiagonal entries are the female survival rates, and the remaining entries are zero. The purpose of the study was to predict the rate of female population growth in Indonesia. The results showed that the Leslie matrix, influenced by the initial population, female fertility rate, and female survival rate, had a dominant eigenvalue of 1.001, indicating that the rate of female population growth in Indonesia tends to increase.

Downloads

Download data is not yet available.

References

[1] Juniadi and Hardiani, Dasar-dasar Teori Ekonomi Kependudukan. Hamada Prima, 2009.

[2] B. Agustina, Teori Kependudukan. Bogor: Lindan Bestari, 2020.

[3] M. Coccia, “The Relation Between Terrorism and High Population Growth,” J. Econ. Polit. Econ., vol. 5, no. 1, pp. 84–104, 2018.

[4] D. Agustina and I. Widjaja, “Pengaruh Struktur Modal, Likuiditas, Tingkat Pertumbuhan, dan Efisiensi terhadap Profitabilitas,” J. Manajerial Dan Kewirausahaan, vol. 2, no. 3, p. 673, 2020, doi: 10.24912/jmk.v2i3.9579.

[5] A. N. Sa’adah, A. S. Sunge, and A. T. Zy, “Prediksi Pertumbuhan Penduduk Dengan Model Clustering Metode Regresi Linear,” J. Teknol. Terpadu, vol. 11, pp. 270–277, 2023.

[6] A. A. A. P. Ardyanti and A. Abdriando, “Penerapan Data Mining Untuk Mengestimasi Laju Pertumbuhan Penduduk Denpasar Menggunakan Metode Regresi Linier Berganda,” JBASE - J. Bus. Audit Inf. Syst., vol. 6, no. 1, pp. 37–44, 2023, doi: 10.30813/jbase.v6i1.4317.

[7] D. Anggreini and R. C. Hastari, “Penerapan Matriks Leslie pada Angka Kelahiran dan Harapan Hidup Wanita di Provinsi Jawa Timur,” Pythagoras J. Mat. dan Pendidik. Mat., vol. 12, no. 2, pp. 109–122, 2017.

[8] A. Maryati and S. Supian, “Application of the Leslie Matrix to Predict the Number and Growth Rate of Women in West Java 2021,” vol. 2, no. 1, pp. 11–23, 2021.

[9] Badan Pusat Statistik, Perempuan dan Laki-laki di Indonesia. Badan Pusat Statistik, 2021.

[10] Sindi and Y. Permanasari, “Prediksi Populasi dengan Matriks Leslie untuk Pemetaan Pemberdayaan Perempuan,” J. Ris. Mat., vol. 2, no. 1, pp. 25–32, 2022.

[11] Y. Pratama, B. Prihandono, and N. Kusumastuti, “Aplikasi matriks leslie untuk memprediksi jumlah dan laju pertumbuhan suatu populasi,” vol. 02, no. 3, pp. 163–172, 2013.

[12] C. C. Marzuki and O. Malko, “Karakteristik Matriks Leslie Ordo Empat,” J. Sains, Teknol. dan Ind., vol. 13, no. 1, pp. 108–115, 2015.

[13] B. D. A. Prayanti, I. G. A. W. Wardhana, M. U. Romdhini, and Maxrizal, “Leslie Matrix Analysis In Demographic Model,” J. Ris. dan Apl. Mat., vol. 5, no. 2, pp. 118–124, 2021.

[14] H. Anton and C. Rorres, Elementary Linear Algebra Aplication Version, 10th ed. John Wiley & Sons, Inc., 2010.

[15] Y. D. Pratiwi, N. Hidayati, M. Mariska, S. I. Sagita, and A. E. Gusaynsan, “Aplikasi Matriks Leslie untuk Memproyeksi Jumlah Penduduk Perempuan dan Laju Pertumbuhan Penduduk di Kabupaten Banyumas Tahun 2027,” Proc. Ser. Phys. Form. Sci., vol. 6, pp. 75–80, 2023, doi: 10.30595/pspfs.v6i.855.

[16] D. Patty, Z. A. Leleury, and J. A. Popla, “Leslie Matrix Construction and Its Properties in Predicting the Size of the Female Population,” Barekeng, vol. 18, no. 1, pp. 637–642, 2024, doi: 10.30598/barekengvol18iss1pp0637-0642.

Downloads

Published

2025-12-10

Issue

Section

Articles

How to Cite

[1]
“Analysis of the implementation of the Leslie matrix on the female population growth rate model”, Perspect. Math. Appl., vol. 1, no. 02, pp. 13–22, Dec. 2025, Accessed: Dec. 27, 2025. [Online]. Available: https://jurnal.kreasipustaka.com/index.php/permata/article/view/11