A theoretical analysis of Hyper-Wiener indices in graphs derived from algebraic structures

Authors

  • Ashadul Umam Departement of Mathematics, University of Mataram Author
  • Abdurahim Departement of Mathematics, University of Mataram Author

Keywords:

Hyper-Wiener, Power Graph, Coprime Graph, Non-coprime Graph, Modulo Group, Dihedral Group

Abstract

The Hyper-Wiener index is a widely used topological descriptor that quantifies the structural complexity of graphs, particularly those arising from algebraic structures. This paper presents a structured synthesis of key theorems related to the Hyper-Wiener index in coprime graphs, non-coprime graphs, and power graphs constructed from the integer modulo group and the dihedral group. Adopting a systematic literature review approach, we compile and restate formal results, including explicit formulas and proven properties. Each theorem is analyzed in relation to the algebraic structure of its underlying group and the resulting graph topology. Our findings highlight how group-theoretic properties—such as order, operation, and element interactions—directly impact the Hyper-Wiener index. This paper is intended to support researchers by providing a conceptual bridge between group theory and topological graph theory, and by identifying potential directions for future work.

Downloads

Download data is not yet available.

References

[1] S. J. Belfield, J. W. Firman, S. J. Enoch, J. C. Madden, K. Erik Tollefsen, and M. T. D. Cronin, “A review of quantitative structure-activity relationship modelling approaches to predict the toxicity of mixtures,” Comput. Toxicol., vol. 25, no. October 2022, p. 100251, 2023, doi: 10.1016/j.comtox.2022.100251.

[2] I. Gutman and B. Furtula, “Hyper-Wiener Index vs. Wiener Index. Two Highly Correlated Structure-Descriptors,” Monatshefte fur Chemie, vol. 134, no. 7, pp. 975–981, 2003, doi: 10.1007/s00706-003-0003-7.

[3] H. Syafitri, I. G. A. W. Wardhana, Abdurahim, M. R. Alfian, and Q. Aini, “Indeks harmonik, hyper-wiener, dan randic dari graf pangkat pada grup dihedral harmonic, hyper-wiener, and randic indices of power graph of dihedral group,” 2022.

[4] E. Kay, J. A. Bondy, and U. S. R. Murty, Graph Theory with Applications, vol. 28, no. 1. 1977. doi: 10.2307/3008805.

[5] J. Gallian, Contemporary Abstract Algebra, 9th ed. Cengage Learning, 2016.

[6] X. Ma, H. Wei, and L. Y. Yang, “The Coprime graph of a group,” Int. J. Gr. Theory, vol. 3, no. 3, pp. 13–23, 2014.

[7] F. Mansoori, A. Erfanian, and B. Tolue, “Non-coprime graph of a finite group,” AIP Conf. Proc., vol. 1750, no. September, 2016, doi: 10.1063/1.4954605.

[8] A. V. Kelarev and S. J. Quinn, “Directed graphs and combinatorial properties of semigroups,” J. Algebr., vol. 251, no. 1, pp. 16–26, 2002, doi: 10.1006/jabr.2001.9128.

[9] R. Audil, I. G. A. W. Wardhana, A. Abdurahim, M. R. Alfian, and Q. Aini, “Indeks hyper-wiener, harrary, szeged, dan padmakar-ivan dari graf pangkat pada grup bilangan bulat modulo hyper-wiener, harrary, szeged, and padmakar-ivan indices of power graphs on integer group modulo,” 2022.

[10] A. G. S, I. G. Adhitya, W. Wardhana, N. W. Switrayni, and Q. Aini, “Some Properties of Coprime Graph of Dihedral Group D 2 n When n is a prime power,” J. Fundam. Math. Appl., vol. 3, no. 1, pp. 34–38, 2020, [Online]. Available: https://doi.org/10.14710/jfma.v3i1.7413

[11] F. J. Fowler, Survey Research Methods. in Applied Social Research Methods. SAGE Publications, 2013. [Online]. Available: https://books.google.co.id/books?id=WM11AwAAQBAJ

[12] R. Juliana, M. Masriani, I. G. A. W. Wardhana, N. W. Switrayni, and I. Irwansyah, “Coprime graph of integers modulo n group and its subgroups” J. Fundam. Math. Appl., vol. 3, no. 1, pp. 15–18, 2020, doi: 10.14710/jfma.v3i1.7412.

[13] R. B. Pratama, F. Maulana, N. Hijriati, and I. G. A. W. Wardhana, “Sombor index and its generalization of power graph of some group with prime power order,” J. Fundam. Math. Appl., vol. 7, no. 2, pp. 163–173, 2024, [Online]. Available: https://doi.org/10.14710/jfma.v7i2.22552

[14] H. Snyder, “Literature review as a research methodology: An overview and guidelines,” J. Bus. Res., vol. 104, no. March, pp. 333–339, 2019, doi: 10.1016/j.jbusres.2019.07.039.

[15] B. K. Sovacool et al., “Towards codes of practice for navigating the academic peer review process,” Energy Res. Soc. Sci., vol. 89, no. May, p. 102675, 2022, doi: 10.1016/j.erss.2022.102675.

[16] M. H. Khalifeh, H. Yousefi-azari, and A. R. Ashrafi, “The hyper-Wiener index of graph operations,” vol. 56, pp. 1402–1407, 2008, doi: 10.1016/j.camwa.2008.03.003.

[17] B. Z. Yatin, M. R. Gayatri, I. G. A. W. Wardhana, and B. D. A. Prayanti, “Indeks hyper-wiener dan indeks padmakar-ivan dari graf koprima dari grup dihedral,” J. Ris. dan Apl. Mat., vol. 07, no. 02, pp. 138–147, 2023.

[18] M. Masriani, R. Juliana, A. G. Syarifudin, I. G. A. W. Wardhana, I. Irwansyah, and N. W. Switrayni, “Some result of non-coprime graph of integers modulo n group for n a prime,” J. Fundam. Math. Appl., vol. 3, no. 2, pp. 107–111, 2020, [Online]. Available: https://doi.org/10.14710/jfma.v3i2.8713

[19] L. R. W. Putra, Z. Y. Awanis, S. Salwa, Q. Aini, and I. G. A. W. Wardhana, “The power graph representation for integer modulo group with power prime order,” BAREKENG J. Ilmu Mat. dan Terap., vol. 17, no. 3, pp. 1393–1400, 2023, [Online]. Available: https://doi.org/10.30598/barekengvol17iss3pp1393-1400

[20] L. H. Ghoffari, I. G. Adhitya, W. Wardhana, and P. K. Dewi, “Hyper-Wiener and Szeged Indices of non-Coprime Graphs of Modulo Integer Groups,” Eig. Math. J., vol. 8, no. 1, pp. 1–6, 2025, [Online]. Available: https://doi.org/10.29303/emj.v8i1.244

Downloads

Published

2025-12-05

Issue

Section

Articles

How to Cite

[1]
“A theoretical analysis of Hyper-Wiener indices in graphs derived from algebraic structures”, Perspect. Math. Appl., vol. 1, no. 02, pp. 1–12, Dec. 2025, Accessed: Dec. 27, 2025. [Online]. Available: https://jurnal.kreasipustaka.com/index.php/permata/article/view/19